

Regression Techniques in Water Supply Forecasting

TOORPS OF ENGINEERS

Where we are headed...

Observed Data

 $X1_1$ X2₁ X3₁ X12 X22 X32 X1₃ X23 X3₃ $X1_4$ X2₄ X3₄ X1₅ X25 X3₅ X1₆ X26 X3₆ $X1_N$ X₂N X3_N

Traditional Regression Model

Principal Components

Principal Component Regression Model

$$Y = \beta_0 + \beta_1 * PC1 + \beta_2 * PC2 + \beta_3 * PC3$$

Standard Multiple-Variable Regression

- Dependent variable is a seasonal inflow volume
- Predictor variables are pseudo-variables created from weighted combinations of similar stations (e.g. sum or average of three snow stations)
- Some models include variables not yet observed ("future variables") where the historic mean ("normal subsequent") is substituted in lieu of the variable being measured, e.g. using "May+June precip" in a 1-April forecast

$$Y = \beta_0 + \beta_1 * X1 + \beta_2 * X2 + \beta_3 * X3...$$

Regression Equation for Libby Water Supply Forecast

$$LibbyLocal \ _{APRAUG} = \beta_0 + \beta_1 * \sum_{Oct}^{Nov} LibbyLocal \ Runoff$$

$$+ \beta_2 * \sum_{Oct}^{Mar} (ELKB + FENB + FTIM + LRSM + BFEI + POLM) WinterPrec \ ip$$

$$+ \beta_3 * (SUMB + NFRB + RMTM + KIMB + WSLM + 0.5 * MORB) Apr1_Snow$$

$$+ \beta_4 * \sum_{Apr}^{Aug} w_i (FTIM + PTHI + KASB + WHFM) SpringPrec \ ip$$

$$w_i \in \{1.0, 1.0, 0.8, 0.5, 0.2\}$$

Concerns with Traditional Regression Models

- Subjective station selection
- Subjective station weighting/aggregating
- Use of "normal subsequent" variable as a surrogate for a "future value" variable
- Variable selection and model selection based on model calibration statistics
- Predictor variables frequently highly intercorrelated

Principal Components

- Creates surrogate variables (principal components) that are a weighted combination of the original variables.
- The principal components are fully independent of each other (zero intercorrelation)
- Most of the "variability" is loaded into the first one or two components.
- Eigenvalues reflect the proportion of the variability in original variables loaded into each component
- Note: PCs combine the information within the predictor variables, but "have no knowledge" of the dependent variable, the variable to be forecasted.

Principal Components

	Observed D	ata	Princ	ipal Compo	onents
X1 ₁	X2 ₁	X3 ₁	PC1 ₁	PC2 ₁	PC3 ₁
X1 ₂	X2 ₂	X3 ₂	PC1 ₂	PC2 ₂	PC3 ₂
X1 ₃	X2 ₃	X3 ₃	PC1 ₃	PC2 ₃	PC3 ₃
X1 ₄	X2 ₄	X3 ₄	PC1 ₄	PC2 ₄	PC3 ₄
X1 ₅	X2 ₅	X3 ₅	PC1 ₅	PC2 ₅	PC3 ₅
X1 ₆	X2 ₆	X3 ₆	PC1 ₆	PC2 ₆	PC3 ₆
X1 _N	X2 _N	X3 _N	PC1 _N	PC2 _N	PC3 _N

Principal Components Regression

- Methodology:
 - P-variables * weighting matrix -> P principal components
 - Multivariable regression:
 - Use the P principal components as the predictor variables
 - Use the original WSF runoff variable as the dependent variable.

$$Y = \beta_0 + \beta_1 * PC1 + \beta_2 * PC2 + \beta_3 * PC3...$$

Principal Components Regression

- Properties of the Principal Component Regression Model with all "P" Components ("p"= # of original variables)
 - Component R-squared values
 - Component R-squared loading
 - Eigenvalue loading
- 7 original variables -> 7 principal components:

PC Analysis	PC_1	PC_2	PC_3	PC_4	PC_5	PC_6	PC_7
Component R-Square	0.84144	0.00383	0.00040	0.00003	0.00495	0.00336	0.00068
Component R-Square %	98.5%	0.4%	0.0%	0.0%	0.6%	0.4%	0.1%
Cumulative R-Square	0.8414	0.8453	0.8457	0.8457	0.8506	0.8540	0.8547

Eigenvalues 4.41 0.80 0.74 0.55 0.36 0.09 0.04

Principal Components Regression

- Variable Selection (Which components do I keep?)
 - Component retention criteria:
 - Eigenvalue: provides the proportion of variability of X variables contained in each PC
 - significant R-squared: indicates the variability in the Y variable explained by this PC in a linear model, i.e. the usefulness of this PC in predicting the Y variable
 - significant Beta: reject this component when the regression coefficient is indistinguishable from zero.
 - sign of Beta: be wary of this component if the sign is negative (applies to water supply forecasting)

- Predictor variables for Dworshak Water Supply Forecast:
 - Climate variable: September SOI
 - Precip variables: Monthly precip at Elk River for Dec & Jan
 - Snow variables: 1-March SWE at 4 locations
- We will be looking at the following:
 - Correlation Analysis Original Variables
 - Standard Regression
 - Stepwise Regression
 - Correlation Analysis Principal Components
 - Principal Components Regression (All components)
 - Principal Components Regression (Selected components)

Correlation Analysis – Original Variables (7)

	Dwr_AprJul	SOI_Sep	ELKDecPpt	ELKJanPpt	PierceMar	LostLkMar	HoodooMar	ElkButteMar	WYear
Dwr_AprJul	1								
SOI_Sep	0.6309	1							
ELKDecPpt	0.5039	0.2665	1						
ELKJanPpt	0.5953	0.2872	0.2700	1					
PierceMar	0.7413	0.5857	0.3648	0.4760	1				
LostLkMar	0.8367	0.4140	0.4886	0.5128	0.6744	1			
HoodooMar	0.8441	0.4811	0.4939	0.5712	8.6276	0.9300	+		
ElkButteMar	0.8664	0.4798	0.4401	0.5696	0.8010	0.9078	0.8495	<u>) 1</u>	
WYear	-0.1818	-0.1211	-0.0647	-0.1697	-0.1183	-0.3165	-0.3073	-0.1903	1

Standard Regression (fits all 7 predictor variables)

Regression Statistics								
Multiple R	0.924488							
R Square	0.854679							
Adjusted R Square	0.826422							
Standard Error	373.218							
Observations	44							

	Coefficients	Standard Error	t Stat	P-value
Intercept	401.961	239.526	1.678	0.102
SOI_Sep	202.159	67.586	2.991	0.005
ELKDecPpt	33.610	27.035	1.243	0.222
ELKJanPpt	44.749	30.768	1.454	0.155
PierceMar	5.537	25.381	0.218	0.829
LostLkMar	6.504	13.613	0.478	0.636
HoodooMar	14.519	15.053	0.964	0.341
ElkButteMar	25.593	13.992	1.829	0.076

Stepwise Regression (fits 3 predictor variables)

Regression Statistics								
Multiple R	0.916011							
R Square	0.839077							
Adjusted R Square	0.827008							
Standard Error	372.5874							
Observations	44							

	Coefficients	Standard Error	t Stat	P-value
Intercept	508.027	222.764	2.281	0.028
SOI_Sep	201.763	59.391	3.397	0.002
HoodooMar	25.021	9.449	2.648	0.012
ElkButteMar	33.801	8.689	3.890	0.000

Correlation Analysis – Principal Components

	Dwr_AprJul	PC7_1	PC7_2	PC7_3	PC7_4	PC7_5	PC7_6	PC7_7	WYear
Dwr_AprJul	1								
PC7_1	0.9173	1							
PC7_2	-0.0619	0.0000	1						
PC7_3	-0.0199	0.0000	0.0000	1					
PC7_4	-0.0054	0.0000	0.0000	0.0000	1				
PC7_5	0.0703	0.0000	0.0000	0.0000	0.0000	1			
PC7_6	0.0579	0.0000	0.0000	0.0000	0.0000	0.0000	1		
PC7_7	0.0260	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	•	
WYear	-0.1818	-0.2436	-0.0389	-0.0909	-0.0898	-0.2064	0.1400	0.1902	2 1

Principal Components
 Regression
 (All 7 components)

PC regression with all components is identical to standard regression with all variables =>

Regression Statistics								
Multiple R	0.924489							
R Square	0.854679							
Adjusted R Square	0.826422							
Standard Error	373.218							
Observations	44							

	Coefficients	Standard Error	t Stat	P-value
Intercept	2627.557	56.265	46.700	0.000
PC_1	391.149	27.092	14.438	0.000
PC_2	-61.982	63.613	-0.974	0.336
PC_3	-20.734	66.204	-0.313	0.756
PC_4	-6.565	76.988	-0.085	0.933
PC_5	104.582	94.466	1.107	0.276
PC_6	170.545	187.024	0.912	0.368
PC_7	110.065	268.496	0.410	0.684

- Select Components to Keep (or use Stepwise on PCs)
 - Component R-squared values
 - Component R-squared loading
 - Eigenvalue loading

PC Analysis	PC_1	PC_2	PC_3	PC_4	PC_5	PC_6	PC_7
Component R-Square	0.84144	0.00383	0.00040	0.00003	0.00495	0.00336	0.00068
Component R-Square %	98.5%	0.4%	0.0%	0.0%	0.6%	0.4%	0.1%
Cumulative R-Square	0.8414	0.8453	0.8457	0.8457	0.8506	0.8540	0.8547

Eigenvalues	4.41	0.80	0.74	0.55	0.36	0.09	0.04

Principal Components Regression (1 component)

Regression Statistics					
Multiple R	0.917301				
R Square	0.841440				
Adjusted R Square	0.837665				
Standard Error	360.928				
Observations	44				

	Coefficients	Standard Error	t Stat	P-value
Intercept	2627.561	54.412	48.290	0.000
PC7_1	391.149	26.200	14.929	0.000

Model Comparison: Standard Error & R-Squared statistics

Model Comparison: Cross-Validation Standard Error (CVSE)

- Calibration vs. Validation statistics
- Split-Sample validation
- Leave-one-out validation
- Cross-validation standard error ("Jackknife" Std Err)
- CVSE supports model parsimony by including d-f adj.
- CVSE better indicator of how the model performs with data not used in the calibration, that it "hasn't seen yet"
- CVSE = PRESS statistic adjusted for degrees-of-freedom
- CVSE can be directly calculated from either Projection matrix or "Hat" matrix (calculated by NRCS PCREG)

Libby Water Supply Forecast using Principal Components Begressier

- Regression
- New equation for each month (similar pool of variables)
- Standard Error/CVSE plots

Software for Regression Analysis

	Software Package			
Capability	Statgraphics	MS Excel	NRCS PCREG	
Standard Regression	Χ	X	Χ	
Stepwise Regression	X	X		
Adj R-square	Χ	X		
Standard Error	Χ	X	X	
Principal Components	Χ	add-in	X	
Eigen analysis	Χ	add-in	X	
PrinComp Regression	X	indirectly	X	
Cross Validation SE		indirectly	X	
Optimal Search			X	
Graphics	X	Χ		

Endorsements

The following agencies use Principal Components regression in their Water Supply Forecasting procedures:

- National Water and Climate Center, Natural Resources
 Conservation Service
- Northwestern Division, U.S. Army Corps of Engineers
- Northwest River Forecasting Center, National Oceanic and Atmospheric Administration
- Columbia River Treaty Operating Committee; Canadian and United States Entities
- Bonneville Power Administration, Dept of Energy
- BC Hydro

Questions?